Singular electrostatic energy of nanoparticle clusters.

نویسندگان

  • Jian Qin
  • Nathan W Krapf
  • Thomas A Witten
چکیده

The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h. We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c(h), together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Dynamic Analysis of a Nano-Plate Carrying a Moving Nanoparticle Considering Eelectrostatic and Casimir Forces

This paper reports an analytical method to show the effect of electrostatic and Casimir forces on the pull-in instability and vibration of single nano-plate (SNP) carrying a moving nanoparticle. Governing equations for nonlocal forced vibration of the SNP under a moving nanoparticle considering electrostatic and Casimir forces are derived by using Hamilton’s principle for the case when two ends...

متن کامل

Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters

Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n  for n = 2-20. Although the binding energy increases with the size of the cluster, it  re...

متن کامل

Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering.

Electrostatically bonded SiO2.Au nanoparticle clusters form by reaction of 3-aminopropylsilane-modified SiO2 spheres (470 nm) with citrate-coated gold nanoparticles (9.7 nm) in water. Reaction of the clusters with 0.01 M KBr or HCl solution induces desorption of the gold nanoparticles within minutes. Reaction of the clusters with alkanethiols CnH2n+1SH (n = 2-18) at 80 degrees C causes the gold...

متن کامل

Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations.

The colloidal stability, phase behavior, and solubility of silica nanoparticles (3-10 nm) that are formed in basic solutions of monovalent cations (primarily tetrapropylammonium) are investigated using a combination of chemical equilibria and electrostatic models. The free-energy gain associated with the formation of an electric double layer surrounding the nanoparticle was obtained by solving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2016